According to my calculations, if one compares gasoline and energetically identical amount of hydrogen, then the price of a gasoline forms about 86% of the price of the hydrogen provided that only
green electricity is used for producing the hydrogen and that there are no energy losses within the hydrogen production process.
The price of energetically equivalent amount of jet fuel, kerosene, forms about 90% of the price of the hydrogen.
Conclusion: both, in the case of cars and flying machines, the green electricity based hydrogen seems to be economically feasible, but unfortunately it would still be too expensive to make it affordable to have helicopter based ambulances in regular use. For example, a 300km two-way flight with the
Eurocopter AS365 seems to cost at least about 200 Euro-s.
The good news is that if someone figures out a way, how to decompose water by using solar energy and some microbes or chemical reaction, then the hydrogen based aviation might become affordable. :-)
The
Mathematica notebook source:
(* All of the following calculations are about one litre of gasoline.*)
Needs["Units`"];
litersPerGallon = 3.78541 Liter/Gallon;
cubicMetersPerGallon = litersPerGallon/(1000*Liter)*Meter^3;
(* http://www32.wolframalpha.com/input/?i=gasoline *)
gasolineEnergy = 47.73 *10^6 Joule/Kilogram;
gasolineDensity = 0.735*10^6*Kilogram/(1000*Meter^3);
gasolineEnergyPerCubicMeter = gasolineDensity*gasolineEnergy;
gasolineEnergyPerLiter = (gasolineEnergyPerCubicMeter*Meter^3)/(
1000*Liter);
eurosPerKroon = 1/15.7 *Euro;(* www.seb.ee *)
greenElectricityUnitPrice = 1.8*eurosPerKroon;
gasolinePriceLiter = 15*eurosPerKroon
gasolineEquivalentElectricitySalesUnits = (
gasolineEnergyPerLiter*(1*Liter))/(3600000 *Joule);
gasolineEquivalentGreenElectricityPrice =
gasolineEquivalentElectricitySalesUnits*greenElectricityUnitPrice
ratioGasoline = \
gasolinePriceLiter/gasolineEquivalentGreenElectricityPrice
dollarsPerKroon = 1/12*Dollar; (* www.seb.ee *)
eurosPerDollar = eurosPerKroon/dollarsPerKroon;
(* http://www32.wolframalpha.com/input/?i=kerosene *)
keroseneDensity = (0.819*10^6*Kilogram)/(1000*Meter^3);
(* http://hypertextbook.com/facts/2003/EvelynGofman.shtml *)
keroseneEnergy = 42.8*10^6 Joule/Kilogram;
keroseneEnergyPerCubicMeter = keroseneDensity*keroseneEnergy;
(* http://www.nyserda.org/energy_information/nyepg.asp
http://www.iata.org/whatwedo/economics/fuel_monitor/index.htm
*)
kerosenePricePerGallon = (5*Dollar)/Gallon*eurosPerDollar;
gasolineEquivalentKeroseneMass =
gasolineEnergyPerLiter/keroseneEnergy*(1*Liter);
gasolineEquivalentKeroseneVolume = gasolineEquivalentKeroseneMass/
keroseneDensity;
gasolineEquivalentKeroseneVolumeGallons =
gasolineEquivalentKeroseneVolume/cubicMetersPerGallon;
gasolineEquivalentKerosenePrice =
gasolineEquivalentKeroseneVolumeGallons*kerosenePricePerGallon
ratioKerosene = \
gasolineEquivalentKerosenePrice/gasolineEquivalentGreenElectricityPrice
(* http://www.eurocopter.com/site/en/ref/Characteristics_99.html *)
eurocopterAS365Power = 700*10^3 Joule/Second;
eurocopterAS365Speed = 269000/3600*Meter/Second;
distanceFromHospital = 300*10^3 Meter;
flightDistance = 2*distanceFromHospital;
flightTakeoffsAndLandingsDuration = 15*60*Second;
flightDuration =
flightDistance/eurocopterAS365Speed +
flightTakeoffsAndLandingsDuration;
flightDurationInHours = flightDuration/(3600*Second)*1.0*Hour
flightEnergy = flightDuration*eurocopterAS365Power
flightEnergyPriceElectricity =
flightEnergy/(3600000*Joule)*greenElectricityUnitPrice